
NASM - 2 Dec 20

John Volckens
Department of Mechanical Engineering
School of Biomedical Engineering
Colorado School of Public Health

Kristen Fedak, Dan Goble, Nick Good, Amy Kiesling, Christian L’Orange, Emily Morton, Rebecca Phillips, & Ky Tanner

jv.colostate.edu
@Smogdr
Why don’t we have more answers here?

• For every 1,000 doctors that graduate from US medical schools, we see ~1 new PhD granted in aerosol science

• There are probably fewer than 5,000 aerosol PhDs actively working in the U.S.

• 80% of those PhDs work outside of academia

• Probably less than 5% study bioaerosols and public health

• Not everything you read on the internet is true…
Questions we hope to answer

1. What is the rate (and size) of bioaerosol emitted by performers of varying age and gender when engaging in music, voice, and dance?

2. How effective are active and passive control measures at reducing bioaerosol emissions and exposures?
 - isolation and distancing
 - room ventilation and filtration
 - use of homemade masks, respirators, shields or other barriers

3. Can the risks of co-exposure be reduced to “acceptable levels” using these active and passive controls?
Some Sizes and Sources of Airborne Particles

- Flour Dust
- Pollen
- Smoke
- Spray

Particle Size, µm
Some Sizes and Sources of Airborne Particles

- Flour Dust
- Pollen
- Smoke
- Spray

Musical and Vocal Arts?

- Breathing
- Sneezing & Coughing
- Talking

Particle Size, µm

0.1 1 10 100
Human bioaerosol spans a huge size range (and not all particles behave the same).

- 0.1 µm
- 1 µm
- 10 µm
- 100 µm

If this particle were the size of a baseball, then this particle would be the size of a baseball stadium.
Over 300 different mask designs tested as of 1 Dec 20
N95 means >95% removal efficiency for particles that flow into the mask

CSU testing program follows modified* NIOSH protocol for particle collection and “breathability”

“Looks” can be deceiving!

Only CDC/NIOSH can certify masks to bear the “N95” label

* https://www.cdc.gov/niosh/npptl/respirators/testing/default.html
N95s are great if you can get them (but you can’t) so what about cloth masks?

Anonymous Donor: “Please test these 24 different masks, each made with popular mask material, and make the data publicly available”
Most N95 masks remove ~99% of all particle sizes.
Mask4: Only 50% of the 3-micron particles are blocked.
Mask17: Add a MERV13 filter layer to Mask4

Mask4: 2-ply high thread-count cotton
Mask17: Add a MERV13 filter layer to Mask4

Mask18: Wash that fancy mask 3 times

Mask4: 2-ply high thread-count cotton
What about “Singer’s Masks”?

http://jv.colostate.edu/masktesting/

Want to learn more? Watch our free webinar on mask design https://col.st/Wq2Bu
Mask efficacy is determined by four primary factors:

1. **Fit**
 - Does the air flow through the mask or around the mask?

2. **Filtration**
 - How efficient is the mask at removing particles that flow through it?

3. **Breathability**
 - How easy is it to draw air through the mask?

4. **Compliance**
 - Are you doing what was asked of you?
Reducing Bioaerosol Emissions and Exposures in the Performing Arts: A Scientific Roadmap for a Safer Return from COVID-19
Experimental Design

• 100 volunteers over 3.6 months (~2/day)
 • Open to ages 12 and up; all genders
 • ~28 singers, actors, dancers
 • ~72 instrumentalists: bassoon, clarinet, euphonium, flute, French horn, trumpet, trombone, saxophone, and possibly others

• Everybody speaks, sings and “does their thing”
 • With and without control technologies in place
 • Masks, bell covers, and screens to be tested
 • “BYOM” approach to testing

• Particle sizes from 0.01 to 100 micrometers
SET Facility: A Musical Class 100 Cleanroom
SET Facility: A Musical Class 100 Cleanroom
Increasing Particle Emissions

Low (maybe 10 counts)

High (~1,000)

More (~100)

below background
Ongoing Instrument Results (particles > 0.3 µm)

Relative Particle Emissions

- highest
- higher
- lower
- below background
Ongoing Instrument Results (particles > 0.3 µm)

Relative Particle Emissions

- highest
- higher
- lower
- below background
Ongoing Instrument Results (particles > 0.3 µm)

Relative Particle Emissions:
- highest
- higher
- lower
- below background

Instruments:
- bassoon
- piccolo
- french horn
- oboe
- flute
- saxophone
- clarinet
- voice
- tuba
- trumpet
Ongoing Vocal Results (particles > 0.3 µm)
Ongoing Vocal Results (particles > 0.3 µm)
Ongoing Vocal Results (particles > 0.3 μm)

n = 47

Speaking
Ongoing Vocal Results (particles > 0.3 \, \mu m)
Ongoing Vocal Results \((\text{particles} > 0.3 \, \mu m) \)

This person singing happy birthday emitted aerosol equivalent to 22 people all talking at once.

![Graph showing aerosol emissions during speaking and singing.](Image)
Mask Efficacy for Singing (particles $> 0.3 \, \mu m$)

Relative Particle Emissions

Wearing a Mask?

highest

higher

lower
1. Yes, some instruments produce more aerosol than others. For example: *Trumpet, tuba > bassoon, piccolo.*

 But the performer is a major determinant of instrument emissions.

 Soon we will examine effects like age, sex, and volume level.

2. Bioaerosol emissions can vary massively from one person to the next. *“Super-spreaders” are maybe 2-5% of the population.*

3. Masks and bell covers appear to be effective.

 Masks/covers will stop particles larger than 10 microns (bigger droplets)

 But what about aerosol between 0.3 and 10 um? Masks and bell covers certainly help but we can’t (yet) say by how much with confidence. We’ll know more in 1-2 months.
Thank you to those who made this work possible!

Major Supporters:
Yamaha Corporation
United States Institute for Theatre Technology (USITT)

Lead Supporters:
American Bandmasters Association Foundation
American Choral Directors Association
American Guild of Musical Artists (AGMA)
Auburn University
Big Ten Band Directors Foundation
CSU School of Music, Theatre, and Dance
Mill City Church
National Association of Teachers of Singing
National Band Association
University of Kentucky
Wenger Corporation

Supporters:
Association of Concert Bands
Community Foundation of Northern Colorado
Conn-Selmer Corporation
Diana Anderson
Gayle Treber
O'ahu Band Directors Association
Texas A&M University Bands
Women Band Directors International Foundation

Advisory Board:
Dan Goble, CSU
Allen Henderson, Ga Southern
Emily Morgan, CSU
Rebecca Phillips, CSU
Heather Pidcoke, CSU
Timothy Rhea, TAMU

Valued Donors: